A Datapro Report on

Language Processors, Inc.
Multi-Language Family

Reprinted from

DATAPRO REPORTS ON UNIX SYSTEMS & SOFTWARE

DATAPRO REPORTS ON UNIX SYSTEMS & SOFTWARE is a unique
management-oriented information service designed to fill the special
information needs of the UNIX systems and software industry. New
and updated reports are published monthly. All opinions and evalua-
tions contained in these reports are independent and objective, and

represent the proprietary work of Datapro Research.

r

Information that leads to action =‘ "

H

DATAPRO RESEARCH/A McGraw-Hill Company

DATAPRO RESEARCH O 1805 Underwood Blvd. O Delran, NJ 08075 USA [(800) 328-2776 O Telex 4761231 DPRO UI.
AUSTRALIA: McGraw-Hill Book Co., 4 Barcoo St., Roseville East, NSW 2069, Australia. Telephone (61) 2 406-4288. Telex 20849. MCGRAW AA.

CANADA: Datapro Research, 330 Progress Avenue, Scarborough, Ontario M1P 2Z5. Telephone (800) 668-9308.
Telex 06525169 MCGRAWHILL TOR.

JAPAN: Nikkei Business Publications Subscription Sales Co., 1-14-6 Uchikanda, Chiyoda-ku, Tokyo 101, Japan. Telephone (81) 3 233-8081. Telex 29902 NIKKEIBPJ.
SINGAPORE: Datapro Research, Unit 05-03 Dapenso Building, 158 Cecil Street, Singapore 0106. Telephone (65) 222-5091. Telex 21912 DPRO RS.

SWITZERLAND: Datapro Research, SA, Case Postale 460, CH-1000 Lausanne 17, Switzerland. Telephone (41) 21 27 41 71. Telex 458196 DSSA CH.

UNITED KINGDOM: Datapro Research, McGraw-Hill House, Shoppenhangers Road, Maidenhead, Berkshire SL6 2QL England. Telephone (44) 628 773 277. Telex 848484 MCHILL G.

_

Language Processors, Inc.

Multi-Language Family

UX17-546-101
Compilers

SYNOPSIS

Language Processors, Inc. (LPI) is a major compiler
vendor in the UNIX market. The company is set
apart from competition because it offers several pro-
gramming languages, making LPI a one-stop lan-
guage source. LPI’s Multi-Language family of
compilers, consisting of Basic, C, Cobol, Fortran,
Pascal, PL/1, and RPG II, is marketed through dis-
tribution agreements with computer manufacturers
and distributors, in addition to direct catalog sales.

LPT’s family of products centers around a modular
software architecture, combining compiler
subsystems, which are shared by LPI’s different pro-
gramming languages. For instance, LPI’s cross-
language calling can assemble a program using
several different languages, so that existing software
can be used without reprogramming. In addition, a
common user interface provides the same system
utility commands no matter what language is being
used.

Products: Basic, C, Cobol, Fortran, Pascal, PL/1,
and RPG II compilers.

Number of Installations: Between 10,000 and 15,000.

Current Versions: Basic 2.12, C 3.01, Cobol 5.65,

Fortran 3.01, Pascal 2.11, PL/1 3.05, RPG II 3.0,
CodeWatch 4.05 (LPI debugger).

UNIX Implementations Supported: AT&T System V
Releases 2 and 3; 4.2 and 4.3 BSD; SCO Xenix; all
major UNIX implementations.

Hardware Supported: Available on all Intel 386 sys-
tems, AT&T WE32XXX-based 3B systems, most
Motorola 680X0-based systems, Motorola 88000
RISC-based systems, and Sun SPARC RISC-based
systems.

Competition: Green Hills Software Inc., Micro Focus
Ltd.

Standards Implemented: All LPI languages meet
ANSI and X/Open standards.

Vendor: Language Processors, Inc. (LPI), 959 Con-
cord Street, Framingham, Massachusetts 01701-
4613. Telephone (508) 626-0006. Fax (508) 626-
2221.

GSA Schedule: Yes.

Price: Compilers cost between $695 and $8,995, de-
pending on target system size.

ANALYSIS

As open systems have emerged, the demand for
software—including programming languages—
available over a broad range of computer systems has
also emerged. Multivendor networking has led to the
need for portability among a range of systems. To
avoid the extravagant cost of development for multi-

MAY 1989

ple systems, hardware manufacturers turn to third
parties for software that conforms to industry porta-
bility standards.

Even though hardware vendors are reducing their in-
volvement in software development, they still pro-
vide an important marketing vehicle for independent
software houses such as LPI. Instead of direct market-

COPYRIGHT © 1989 McGRAW-HILL, INCORPORATED. REPRODUCTION PROHIBITED

DATAPRO RESEARCH, DELRAN NJ 08075 USA

UX17-546-102
Compilers

Language Processors, Inc.
Multi-Language Family

ing, LPI sells primarily through hardware manufac-
turers and distributors, saving both time and money
by eliminating the overhead associated with individ-
ual, piecemeal sales. This move is advantageous for
LPI, with the bulk of its income derived through
these companies.

LPI's marketing strategy includes distribution agree-
ments with over 20 domestic and 10 foreign com-
puter manufacturers. In addition, it has agreements
with multinational UNIX distributors, such as The
Santa Cruz Operation and Interactive Systems. It also
markets its compilers through direct catalog sales, a
network of overseas distributors, and an affiliate in
Japan called Nippon LPI (NLPI). Other overseas dis-
tributors cover France, West Germany, Brazil, Great
Britain, Hong Kong, Thailand, Singapore, and Korea.
(See Table 1 for more specific information on LPI’s
marketing base.)

In addition to its distribution network, LPI is target-
ing the government market as a major customer. Five
of its compiler products were included in the recent
AFCAC 251 Air Force contract awarded to AT&T.
LPI and AT&T had been working together for two
years to obtain the contract, calling for 20,000 AT&T
3B2/600 systems loaded with LPI compilers, totaling
in excess of $1 billion over the next eight years. These
systems constitute the largest federal procurement in
history based on the UNIX operating system. The
contract promises LPI visibility in the government
market and will dramatically increase the installed
user base of LPI software across the U.S.

COMPETITIVE POSITION

LPI is in a unique marketing position, offering seven
different programming languages, where most com-
piler vendors offer only one. LPI's languages offer
common programming tools, providing end users
with the benefit of working with the same tools for all
their language needs.

LPI competes against Green Hills Software, which
also provides a family of compilers. LPI offers a
wider variety of languages than Green Hills, however,
targeting both scientific and business markets. Green
Hills only competes in the scientific market, with
offerings in Fortran, C, and Pascal languages. Another
competitor is Micro Focus, offering a popular Cobol
compiler; as with most other software houses, how-
ever, Micro Focus only offers one language.

Because, like LPI, distributors supply multiple lan-
guages, they constitute LPI’s largest competitive base.
Distributors market an assortment of products from
single-compiler vendors, which is ideal for those users

COPYRIGHT © 1989 McGRAW-HILL, INCORPORATED. REPRODUCTION PROHIBITED

TABLE 1. LPI MARKETING BASE

Hardware Software Software
Manufacturers Developers Distributors
Altos SPSS sco
AT&T Axis Corp. Interactive
Apollo Educational UniSoft
Arix Testing (ETS) Nippon LPI
Convergent Heuristima Corp ToplLog
Data General Lawson Assoc Softway
Hewlett-Packard Precision Aval
Honeywell Systems

IBM Programming

MIPS

NCR

NEC

Prime

Tolerant

Unisys

Wang

who need one language. But for those requiring sev-
eral languages, LPI comes out ahead because it offers
multiple compilers accessible through common tools
and interfaces.

As a privately held company, LPI’s management can
exercise more control over company business than
public companies. Because stockholders do not have
to be considered, private companies have the flexibil-
ity to take risks, as with LPI's decision to acquire the
competing Ryan McFarland Corporation (RM) in
February 1989. This decision promises LPI more
presence in the Cobol world, but first LPI will have to
resuscitate Ryan McFarland, whieh some time ago
lost its preeminent market position. RM will boost
LPI's Cobol market share, bringing with it a large
installed base of companies such as IBM, GE, Digital,
and NCR. Even though LPI and RM service the same
market, they will target different segments. In addi-
tion to new Cobol sales, RM will generate revenues
through servicing customers already using RM-
Cobol. LPI will continue to sell LPI-Cobol to those
customers requiring additional languages.

Acquisitions are not the only strategy LPI has
adopted to keep on top of the quickly changing com-
puter market. In its continuing efforts to keep ahead
of competition, LPI ships planned product updates to
its customers every six months. Major revisions are
provided faster, as standards evolve and fixes are
required. This aggressive update policy ensures that
customers always have the latest code.

LPI also tracks and supports new technologies aggres-
sively. This policy recently gave LPI a competitive
boost when it announced its support of the Motorola
88000 RISC and SUN SPARC architectures, making

MAY 1989

DATAPRO RESEARCH, DELRAN NJ 08075 USA

R

UX17-546-103
Compilers

Language Processors, Inc.
Multi-Language Family

it the first language vendor to make a family of soft-
ware development tools available for RISC-based ar-
chitectures.

Of course, in order to be fully competitive in a rap-
idly standardizing market, LPI’s products must ad-
here to industry standards, such as those mandated
by ANSI and X/Open—and they do. LPI supports
the efforts of both the Open Software Foundation
(OSF) and UNIX International (UI), although it is
not a member of either organization at this time, due
to both organizations’ current lack of involvement in
compiler issues. Nevertheless, since these groups will
influence the future of UNIX, it is very important for
LPI to keep close watch over what they are doing. See
Table 2 for language standards and extensions.

ADVANTAGES AND RESTRICTIONS

LPI gained a foothold in the federal sector through
the recent AFCAC 251 contract. Because LPI is tar-
geting the federal government, however, it is surpris-
ing that the Ada language has not been developed as a
member of its language family. Ada is important to
the federal sector and, in particular, to the armed
forces in programming embedded systems for weap-
ons control and other specialized functions.

Currently, LPI provides its customers more than just
individual compilers. Modular architecture provides
reliability because common components, shared
among several languages, allow maintenance and sup-
port on fewer individual modules. Fewer modules,
naturally, offer fewer places for a problem to occur.
Troubleshooting is less complex, because technicians
can test components rather than break down the en-
tire system.

Cross-language calling is another advantage. This fea-
ture integrates existing programs written in any LPI
language into new programs. It also means that new
code does not have to be created and debugged if it
exists elsewhere. For instance, a programmer writing
a Pascal program wanting to manage data files, can
use a data management portion of a Cobol program
and integrate it into the Pascal program.

Although cross-language calling is attractive in the-
ory, its value could be mitigated by an unpleasant
reality: it can be a chore to track down old code for
use in a new program. LPI has a viable answer to this
problem. Its product, called Cocoon, can organize
and track code, providing an object-oriented database
that can store source code and assign traceable char-
acteristics to it.

MAY 1989

TABLE 2. LPI LANGUAGE COMPATIBILTIY

Language Standards Portability
Extensions
Basic ANSI X3.60-1978 CBasic
Microsoft Basic
Cc ANSI C X3J11
Cobol ANSI X3.23-1985 1BM/370 Cobol
ANSI Cobol-68 MF Level Il Cobol
ANSI Cobol-74 RM/Cobol
Fortran ANSI X3.9-1978 VAX-Fortran
MIL-STD-1753 Fortran-66
Pascal ANSI/IEEE
770 X3.97-1983
ISO Level O
PL/1 ANSI PL/1 X3.74-1981 IBM-PL/1
VAX-PL/1

LPI’s compilers are true compilers, not interpreters.
This fact is especially important to users who develop
large programs. Interpreters are intrinsically slower;
they translate and execute source code line by line. If
a program is used multiple times, the sequence has to
be repeated every time because the compilation never
produces an object file. True compilers go through
fewer compilation steps; they compile only once, pro-
ducing object code that is used whenever the program
1S run again.

USER EXPERIENCE

Datapro conducted telephone interviews with two
LPI users in March 1989. These users, both located in
the United States, were chosen from a list of customer
references supplied by LPIL.

Site One: We spoke to an analyst working for a soft-
ware development house in the Midwest. His firm
develops manufacturing applications based on UNIX
System V Versions 2 and 3. He has dealt with LPI for
five years and is satisfied with the company and its
products. His company provides a manufacturing ap-
plication based on LPI-Cobol, with outside C subrou-
tines. He said that he has had no problems interfacing
the two languages.

The only problems this company has experienced are
with software revisions from LPI. Serious bugs have
shown up after installation of fixes for minor bugs.
Additional corrections, however, always resolve the
second set of bugs. The problem of fixes creating bugs
may seem major, but the user stressed that this type

COPYRIGHT © 1989 McGRAW-HILL, INCORPORATED. REPRODUCTION PROHIBITED

DATAPRO RESEARCH, DELRAN NJ 08075 USA

UX17-546-104
Compilers

Language Processors, Inc.
Multi-Language Family

of problem commonly happens in software develop-
ment, regardless of which vendor’s software is used.
The user stated that LPI has always fixed bugs in a
timely manner—the longest time it has ever taken
LPI to fix a bug is one month. This analyst recom-
mends LPI to others, citing excellent support and
ease of use as major benefits. He stated, “We’re prob-
ably LPT’s best customers.”

Site Two: We interviewed a system administrator of a
major corporation located in the Great Lakes region.
This user is overseeing a PL/1 conversion from a
Honeywell mainframe running the Multix operating
system to Apollo desktop units running AT&T UNIX
System V. The department is presently halfway
through the code conversion. When asked why he

chose LPI, he stated that the company was the only
vendor that supplied PL/1 for Apollo systems. Since
LPI offers only the standard PL/1, this company
must rewrite the code where Multix extensions were
originally used.

The system administrator stated that the program-
mers have had to call LPI several times with ques-
tions and have always received satisfactory answers.
Usually, though, the programmers are able to find
answers in the documentation. When the department
started the conversion, features of Honeywell’s PL/1
and LPI’s PL/1 had to be compared. The user said
that LPI’s documentation clearly laid out the features,
which this user found extremely helpful.

CHARACTERISTICS

ARCHITECTURE

The LPI family of language standards includes Basic,
C, Cobol, Fortran, Pascal, PL/1, and RPG II. Devel-
opment tools supporting these languages include
LPI’'s CodeWatch, a source-level debugger; CoEdit, a
language editor; and Cocoon, a development environ-
ment organization tool.

Each LPI compiler employs a component architecture
made up of five subsystems—the front end, opti-
mizer, code generator, run-time library, and source-
level debugger. Using this common architecture,
subsystem components can be shared between lan-
guages. For instance, programs written in both Basic
and Pascal can be debugged with a common debug-
ger. This architecture also allows developers to move
applications between hardware platforms by recom-

piling.

The front end (i.e., the compiler itself), which con-
tains the syntax and semantics analysis for each lan-
guage, differs among the various compilers. The
remaining components, common to all LPI compil-
ers, are explained in the following sections. A separate
technical description will be supplied for each com-
piler in the product line. Pricing and support infor-
mation for all products is grouped together after the
last technical description. Figure 1 illustrates LPI’s
product relationships.

User Interface

The user interface is command-line driven. Users,
however, can implement interactive windows and
pop-up menus to aid in program development for use

COPYRIGHT © 1989 McGRAW-HILL, INCORPORATED. REPRODUCTION PROHIBITED

with bit-mapped terminals. The commands for all
utilities are the same no matter what language is
being used; only the commands inherent in the spe-
cific language are different. (See the section on CoEdit
Editor below for more information about these facili-
ties.)

Level of Machine Code Generated

LPI compilers are true compilers, translating source
code first into an intermediate language and then into
machine code. LPI’s intermediate language is the pro-
prietary LPSI, which retains many of the characteris-
tics of the source code and is optimized to eliminate
inefficient operations or redundancies. When LPSI is
translated into machine code, it is stored. Subsequent
executions in machine code are executed at the speed
of the machine’s hardware. There is no translation
after the program has been compiled. The product
line has no artificial limitations, such as the number
of source lines compiled, symbol table size, file size,
or data size (i.e., no 64K-byte limitation).

LPSI is the one common point among LPI’s seven
diverse computer languages (front ends) and many
different code generators (back ends), such as
industry-standard processors and a range of propri-
etary processors or architectures. This connecting
point to back ends is used as the interface for manu-
facturers adopting or developing 4GL and CASE
products.

MAY 1989

DATAPRO RESEARCH, DELRAN NJ 08075 USA

UX17-546-105
Compilers

Language Processors, Inc.
Multi-Language Family

Basic C

Cobol | Fortran II Pascal II PL/I I RPG Il

Optimizer

Run-Time
Library

Code Generator

User
Program

CodeWatch

Figure 1. LPI's component architecture is the technology underlying each compiler. Its five subsystems consist of the front end
(programming language), optimizer, code generator, run-time library, and CodeWatch debugger. The front end contains the syntax for
each language and differs among all compilers. All the other subsystems are common to all compilers.

Code Generator

The modularity of LPI’s component architecture per-
mits movement of the language family to different
processors by creating a new code generator and re-
placing approximately a quarter of the run-time li-
brary. A new code generator can be created using
LPI's Code Generator Generator, which produces the
major portion of a new code generator by describing
the characteristics of the processor for which the gen-
erator is being created. The entire language family can
then be ported to the new system. LPI provides code
generators for the following hardware architectures:

» Motorola 680X0 microprocessor

Motorola 88000 RISC processor

Intel 386 microprocessor

Sun Microsystems SPARC RISC processor

AT&T WE32XXX microprocessor

National Semiconductor NS32XXX microproces-
sor

Optimizing Facilities

All LPI compilers use a common optimizer. Optimi-
zation facilities are both global, across entire program
units, and local—within individual statements or ex-
pressions. Three levels of optimization are available.
No optimization is useful for system checking, pro-

MAY 1989

gram debugging, and ensuring the fastest possible
compilation time. The intermediate level of optimi-
zation eliminates redundant computations and opti-
mizes branches and logical expressions. The highest
level of optimization generates the most efficient run-
time code. In addition, machine-dependent optimiza-
tions can be performed to make the most efficient use
of the processor hardware.

Language-specific optimization is in the front end
(individual languages), and peephole optimization is
in the back end (code generators). Specific features
include constant folding, loop induction, dead code
elimination, and common subexpression elimination.

Cross-Language Calling

Through cross-language calling, programmers can in-
tegrate new languages into a program while maintain-
ing existing subroutines. Thus, a programmer is not
restricted to a single language when writing applica-
tion programs but can use the language best suited to
the given programming task. For instance, an applica-
tion’s numerical processing tasks can be written in
Fortran and then accessed by a main program written
in PL/1.

Cross-language calling also allows programmers to in-
tegrate portions of existing programs written in any
LPI language into new programs so that they do not
have to create and debug new code. LPI’s debugger
recognizes the language being used and communi-
cates with the programmer in the conventions of that
language.

COPYRIGHT © 1989 McGRAW-HILL, INCORPORATED. REPRODUCTION PROHIBITED

DATAPRO RESEARCH, DELRAN NJ 08075 USA

UX17-546-106
Compilers

Language Processors, Inc.
Multi-Language Family

C LPI-FORTRAN Main Program calling an
C LPI-C Subprogram to delete a file.
c

PROGRAM MAIN
C

INTEGER*4 1I,J,K

REAL*8 A,B,C
C
(¢

lCALL DELETE "Myfile"™//char (0)

PRINT*, 'Myfile deleted."® /*

char fn [

}

Subprogram to perform file deletion ®

DELETE (fn)

unlink (fn);

/* Filename string passed from calling */
/* program. */

/*Perform UNIX system call to delete filex*/

Figure 2. This program demonstrates the essence of cross-language calling—developers target the best language to the given
programming task. This subroutine can be called into any other program written in an LPI language. In this example, a Fortran

program calls a C file deletion routine.

This feature can also be extended to native C pro-
grams. LPI compilers produce object code readable
by the system linker and loader, allowing integration
into other applications, such as DBMS or graphics
packages and into applications developed with LPI
compilers. See Figure 2 for an example of cross-
language calling.

Run-Time Library

An extensive run-time library is common to all of the
compilers. The run-time library is a set of routines
that save the effort required to do many of the sys-
tem’s standard internal functions. The run-time li-
brary contains routines that include the following
functions:

» Math routines

» General utility library, e.g., data type conversion

» Commercial instruction set simulation

« Language-dependent routines

» Operating system interface routines

« File access interface routines

COPYRIGHT © 1989 McGRAW-HILL, INCORPORATED. REPRODUCTION PROHIBITED

e Common multikey, indexed sequential file-
handling routines

Error Definition and Handling

Full support to aid users in the diagnosis and correc-
tion of programming errors is provided. Error mes-
sages specify which conditions have been
encountered and where in the source program they
were found. Messages also identify the severity of the
error, specific information about the error, and a
probable solution.

Editing and Debugging Facilities

LPI offers an editing facility, CoEdit, and a debugging
facility, CodeWatch. CoEdit and CodeWatch provide
common facilities for programmers to write, test, and
debug programs using the conventions and symbols
of different source languages. Separate descriptions of
CoEdit and CodeWatch are explained in the follow-
ing sections.

CoEdit Editor
CoEdit is a language-sensitive editor, integrated with

LPI compilers and diagnostics; it works with both
conventional and bit-mapped terminals. Commands

MAY 1989

DATAPRO RESEARCH, DELRAN NJ 08075 USA

UX17-546-107
Compilers

Language Processors, Inc.
Multi-Language Family

are systematically organized into logical mnemonic
groups. In addition to programming features, CoEdit
provides a macro programming environment, with a
compiler and debugger for the macros. Features in-
clude block, locate and replace, and tab functions.

Editing Facilities: Text can be moved between files;
files matching a certain pattern can be loaded sequen-
tially or simultaneously. Windows can be tiled, over-
lapped, expanded, hidden, or marked for read-only.
The windows have line continuation and overflow
indicators on the window borders. Pop-up menus lo-
cate commands without the user’s having to leave the
text or look through the manual. Menus can be
turned off once commands are learned. Context-
sensitive online help is available at most prompts;
directory listings are also available at file prompts.

The keyboard is reconfigurable, allowing the assign-
ment of command keys to be changed. CoEdit saves
up to 36 sequential backup source code files. It can
perform automatic background saving, storing work
in special files to prevent loss in the event of system
or power failures. CoEdit’s undo feature remembers
over 32,000 deletions, allowing access to any one of
them.

Error Handling: CoEdit has a built-in command to
compile source code. When compilation is complete,
CokEdit highlights any lines in the source file that were
flagged by the compiler as containing errors and
places the cursor at the first error. The corresponding
error message from the compiler appears on the bor-
der of the window, allowing errors to be fixed when
they appear. This fa0111ty eliminates the need for error
listings or viewing error output. When the error is
fixed, the error status indicator for that line is turned
off and moves to the next error.

Syntax Checking Facilities: CoEdit also provides pre-
compilation syntax checking for properly balanced
parentheses, brackets, or braces. When entering a
closing delimiter, CoEdit flashes the cursor at the
corresponding opening delimiter.

Programming Tools: Several tools are available
within CoEdit. An expression evaluator performs
computations and shows the results in binary, octal,
decimal, and hexadecimal format. Additionally, a ta-
ble displaying octal and hexadecimal equivalents of
ASCII or EBCDIC characters can be displayed online.
ASCII or EBCDIC values of specified characters can
also be displayed within text.

An on-screen file display command lists those files
that can be accessed from a given directory, including
date and time stamps. Programs or system com-
mands can be executed from within the editor or by

MAY 1989

exiting to the UNIX shell. Output from any com-
mand can be inserted directly into text.

Macro Capabilities: CoEdit’s macro language is simi-
lar to C and Basic and includes its own macro com-
piler and source-level debugger. An unlimited
number of macros can be created and recorded di-
rectly from the keyboard for reuse of a key sequence.
Macros can also be entered in source form and com-
piled. If there is a mistake in a macro, the source-level
macro debugger can determine the problem.

Locate and Replace: Editing functions include Locate
and Replace commands with an option that finds all
occurrences of a pattern. All lines containing the pat-
tern are gathered in a subwindow, which can then be
edited as a group. When these lines are returned to
the parent window, the changes are automatically re-
placed. Locate and Replace commands can find or
replace regular expressions and are optionally case
sensitive. Locate or Replace can be done in a forward
or backward direction or within a block definition or
line range. Optional prompts are available to verify
each replacement.

Blocks: Each window can have its own block defined.
Blocks can be copied, moved, or deleted within the
file and copied or moved within or between buffers.
The Block Filter command extends CoEdit functions
with any user-defined or system filter function. Co-
Edit can automatically take the contents of a block
and replace them with the output from the filter. This
operation can be undone because the original block is
saved in the delete buffers before the filter operation
is performed.

Tabs: The Tab feature can dynamically change tab
widths. Available types are soft tabs, hard tabs, and
fixed tabs. Fixed tabs allow manual tab sets to be
made at any column position.

CodeWatch Debugger

CodeWatch is LPI’s interactive source-level debugger
for its Basic, C, Cobol, Fortran, PL/1, and Pascal
compilers. CodeWatch works on actual source code
without using an interpreted intermediate language. It
allows programmers to interact in the conventions
and symbols of the source language, as well as track
program variables in the source language.

Each CodeWatch command has an alternate abbrevi-
ation; for example, the abbreviation ARG can be
entered instead of ARGUMENTS. Also, on-line help
provides information on the use of each CodeWatch
command for reference during debugging sessions.
See Table 3 for CodeWatch commands.

COPYRIGHT © 1989 McGRAW-HILL, INCORPORATED. REPRODUCTION PROHIBITED

DATAPRO RESEARCH, DELRAN NJ 08075 USA

UX17-546-108

Compilers
Language Processors, Inc.
Multi-Language Family
TABLE 3. CODEWATCH COMMANDS
ARGUMENTS Prints the arguments of a specified procedure MACRO Defines and names a macro.
environment.
NBREAKPOINT Removes one or more breakpoints.
BREAKPOINT Specifies the point at which program execution
is to be suspended for debugger actions. NLOG Stops logging of debugger commands to a
file.
COMMANDLINE Prints the command line argument with which
the user program is invoked. NMACRO Removes one or more macro definitions.
CONTINUE Begins or continues program execution. NTRACE Disables entry or statement tracing.
DSTEP Sets the default stepping mode, either OVER, POINT Sets the source file display pointer within
IN, or OUT, and sets the action list for the the current source file.
STEP command.
PRINT Prints a specified number of lines from the
ENVIRONMENT Sets the evaluation environment. current source file.
EVALUATE Evaluates and prints the resultant value of. QuUIT Terminates the debugging session.
expressions in the source language.
READ Reads and executes debugger commands from
FIND Locates and prints a specified string in the a specified file.
source code.
RELOAD Reinitializes the user program.
GOTO Moves the execution pointer to a specified
statement. RETURN Transfers the execution pointer to the exit
point of the current subroutine, and returns a
HELP Lists debugger commands and operations. value, if necessary.
LBREAKPOINT Lists information on one or more breakpoints. SOURCE Changes the current source file to be
displayed.
LENVIRONMENT Lists the current evaluation environment.
STACK Displays various information on a specified
LET Assigns the value of an expression to a number of stack frames.
variable.
STEP Executes a specified number of statements.
LMACRO Lists one or more user macro definitions.
TRACE ENTRY Displays subroutine, block entry, and exit
LOG Logs debugger commands to a file. point information during program execution.
LRETURN Prints the return value of a function. TRACE Displays source info during progranr execution.
STATEMENT
LSOURCE Prints the name of the current source file
being displayed. TYPE Prints the resultant type of an expression.
LSTEP Lists the current stepping mode, IN or OVER, WHERE Prints the current execution point or the
and the default action list. location of a specified statement.
LTRACE Prints the current tracing mode. lcommand Invokes the command interpreter to perform
operating system commands.

Program Execution: Execution of a program can be
started or suspended and resumed at user-specified
points. Execution can also be transferred from one
point to another, including a subroutine exit point. A
return value can be set at this exit point.

Breakpointing: This capability allows the developer
to suspend program execution at any source state-
ment or at the entry or exit point of any subroutine.
As each breakpoint is encountered, a series of com-
mands and checks can be performed automatically.
Conditional breakpointing permits automatic breaks
under specified conditions. Skip counts provide flexi-

COPYRIGHT © 1989 McGRAW-HILL, INCORPORATED. REPRODUCTION PROHIBITED

bility by allowing execution to advance over a given
number of breakpoints for rapid access to errors.

Stepping: With this facility, execution of one or more
source statements can be made at one time. Develop-
ers can step one statement at a time into, out of, or
over a called subroutine. This facility helps determine
the effects of certain results later in the program.

Tracing: This enables information about user-
specified statements and subroutines to be reported
as the program executes, thus allowing the isolation
of errors to a particular program unit.

MAY 1989

DATARRO RESEARCH, DELRAN NJ 08075 USA

UX17-546-109
Compilers

Language Processors, Inc.
Multi-Language Family

Action Lists: Several debugger commands can be
grouped into a unit and executed at user-specified
breakpoints, steps, or tracepoints. These action lists
allow developers to design and implement commands
for specific debugging requirements.

Macros. Macros allow users to create customized de-
bugger commands interactively or read them from a
file. Once defined, macros become a single debugger
command that can be used as shorthand for debug-
ging a program, ensuring consistency of debugging
efforts throughout a debugging session.

Development Control

LPI provides an object-oriented software develop-
ment tool, called Cocoon, which provides sets of
frameworks specifying procedures and guidelines that
govern a software development project. Cocoon inte-
grates and organizes user programs, system com-
mands, and procedures. It provides the source,
version, and product status control; manages the con-
figuration of the environment; and maintains history
records. It includes an interactive window and menu
interface system, as well as an object-oriented data-
base.

Cocoon conforms to the development environment
in place. For example, using Cocoon’s object orienta-
tion, text, source code, defects, executable code, or
other types of data can be described. This data is then
assigned characteristics and recorded.

Two kinds of frameworks, i.e.. sets of classes, objects,
and methods that implement a desired function, can
be used with Cocoon:

« LPI-designed frameworks, which can be used and/
or modified, including Online Documentation,
Software Development, and Documentation Con-
trol frameworks

« User-created object-oriented frameworks (such as
those for prototyping a proposed application)

Either of these frameworks can be integrated into
existing environments within the development pro-
cess.

Online Documentation

Online documentation can be created with the gen-
eral Cocoon framework, ranging from man pages in
the UNIX environment to a linked hypertext envi-
ronment where users move around online documen-
tation as needed. This framework allows online

MAY 1989

information to 'be ported to every system on which
the application runs. The Online Documentation
framework allows application developers to semiau-
tomatically create, format, and link frames of infor-
mation into an online documentation system. The
application end user can select a topic by highlighting
it and viewing the corresponding frame. Each frame
then offers a choice of what to see next. The reader
can select and learn about other terms in the text
through a pop-up window.

Software Development

Cocoon's Software Development framework manages
software development functions, including configura-
tion management and source and version control.
The configuration management feature defines and
manages the software modules used to build a prod-
uct. The source and version control feature maintains
different versions of source code, allowing re-creation
of older versions and variants of a product.

Documentation Control

The Documentation Control framework allows
streamlining of repetitive documentation efforts.
With this system, writers define which changes need
to be made to which books and enter those changes
one time. Documentation is then updated automati-
cally on all indicated books at once.

Customization -

Any Cocoon framework can be customized as needs
change. Cocoon is fully programmable and allows the
integration of user programs, system commands, and
procedures into a consistent whole through an object-
oriented database and a conventional programming
environment.

Developers can create procedures geared toward spe-
cific or unique software development activities by
defining certain object classes and specified opera-
tions to be performed on those items. Basic object
classes include character strings, numbers, sets of ob-
jects, and references to other objects. In addition,
attributes convey additional information about the
objects. Programmers can define any number of ob-
ject classes derived from the basic class.

LPI-Basic Technical Description

LPI-Basic is an implementation of the American Na-
tional Standards Institute (ANSI) Minimal Basic

COPYRIGHT © 1989 McGRAW-HILL, INCORPORATED. REPRODUCTION PROHIBITED

DATAPRO RESEARCH, DELRAN N.J 08075 USA

UX17-546-110
Compilers

Language Processors, Inc.
Multi-Language Family

TABLE 4. LPI-C FUNCTIONALITY

Statements
break continue do-while
for goto if
if-else null return
switch while
Data Types
*(pointer to) char double
enum float int
long short unsigned char

unsigned int unsigned long unsigned short

Special Characters

‘\r'(carriage return) ‘\n'(newline) “\f(form feed)

“\t’(tab) *\b’(backspace) “\\'(backslash)
*\ddd’(octal constant) *\”(single quote)
Reserved Words

auto break case
char continue default
do double else
entry enum extern
float for goto
if int long
register return short
sizeof static struct
switch typedef union
unsigned void while

Preprocessor Commands
#define #else #endif
#if #ifdef #ifndef
#include #line #undef

X3.60-1978 standard. It allows conversion of existing
applications from other Basic compilers and applica-
tions developed in Microsoft's MBasic and Digital
Research. Inc.’'s CBasic. It takes advantage of other
LPI functions. including cross-language calling. the
CodeWatch debugger. and listing options. When er-
rors are found. a complete sentence error message is
supplied that includes the exact line number of the
error and indicates probable solutions.

LPI-C Technical Descriptioh

LPI-C is an implementation of the industry-standard
C. as defined by Kernighan and Ritchie in The C
Programming Language. LPI will also release ANSI
C in June 1989. LPI-C incorporates extensions to
enhance compatibility with recent C implementa-
tions. including full support of enumerated data
tyvpes. structure assignment. void data tvpe. the

COPYRIGHT € 1989 McGRAW-HILL, INCORPORATED. REPRODUCTION PROHIBITED

“defined™ preprocessor. and the “_LINE_" and
*“_FILE_" predefined preprocessor identifiers.

An integrated preprocessor compiles programs in one
step. eliminating the need to run several procedures.
LPI-C is compatible with ¢¢ command line options
and existing /make files. Users can invoke their pro-
gram using either C options or ¢¢ compiler options.
Error messages identify the location of an error by
placing a pointer at the exact location within the line.
See Table 4 for specific LPI-C functions.

LPI-Cobol Technical Description

LPI-Cobol fully implements the ANSI Cobol X3.23-
1985 programming language. It is compliant with X/
Open. Language extensions support the porting of
RM/Cobol. Micro Focus Level II Cobol, IBM/370
Cobol. Cobol-74, and Cobol-68 applications. Con-
verted applications can be ported to several hardware
platforms. including the Motorola 680X0 series,
National Semiconductor NS32XXX., AT&T
WE32XXX. and Intel 386.

ANSI modules implemented at the high level include
Nucleus. Sequential I/0O. Relative 1/0O. Indexed 1/0.,
Sort/Merge. Inter-Program Communication, Source
Text Manipulation. and. optionally, Segmentation.
Federal Information Processing Standard (FIPS) flag-
ging is offered. allowing users to note extensions be-
vond a given FIPS level.

Since LPI-Cobol is a 32-bit compiler. there are no
artificial limits on program size due to hardware ar-
chitecture. Program size and the amount of data are
restricted only by the amount of memory available on
the system.

The run-time system provides a multikey indexed
sequential file handler and Sort/Merge routine for
applications development. The Copy statement pro-
vides file sharing among Cobol programs, permitting
modular programming and program abstraction. An
ISAM database system. using C-ISAM revision 3, is
supported. permitting users to look up records in
Cobol by using primary or alternate keys or by rela-
tive access. Record locking is also supported, provid-
ing data integrity. Interfaces to Oracle, Unify, and
Informix relational database management systems
are possible through C routines.

LPI-Fortran Technical Description
LPI-Fortran is a full implementation of the ANSI

Fortran X3.9-1978 (Fortran-77) and MIL-STD-1753
and is X/Open compliant. It provides extensions to

MAY 1989

DATAPRO RESEARCH, DELRAN NJ 08075 USA

UX17-546-111
Compilers

Language Processors, Inc.
Multi-Language Family

TABLE 5. LPI-FORTRAN EXTENSIONS

» 32-character name lengths.

« Data initialization in type statement.

« Equivalence of noncharacter with character entities.
« Conditionally compiled lines.

* One-trip DO loop compiler option.

« IMPLICIT NONE statement.

« Logical data types in arithmetic expressions.
« | as a comment indicator.

« Retrieval of command line arguments.
« Hollerith constants.

*» DO WHILE loops.

« Octal and hexadecimal constants.

« Recursion support for subprograms.

* INCLUDE external files statement.

« Bit intrinsic operations.

» Tab formatted source lines.

« Ampersand (&) continuation lines.

* # carriage control character.

*No column 72 limit.

« Lowercase characters.

« Case insensitivity/sensitivity.

« Nonalphabetic characters in names.

« Extended logical, integer data types.
« Data initialization flexibility.

« . or "." character constants.

« Save-all compiler option for data.

« Common blocks treated as save.

« Subscripts in equivalence statement.

help transport existing applications developed on
Digital and IBM systems to UNIX systems.

Enhancements include recursive subroutines and bit
intrinsic functions. Recursive subroutines provide
flexibility in that a program subroutine can reference
itself: bit intrinsic functions allow users to manipulate
the number of bits representing internal data types.
See Table 5 for LPI-Fortran extensions.

LPI-Pascal Technical Description

LPI-Pascal is an implementation of the ANSI/IEEE
Pascal 770X3.97-1983 standard, and conforms to the
ISO/7185 Level 0 standard. It allows conversion of
existing applications from other Pascal dialects by
recompiling. Separate compilation of Pascal program
units is supported, facilitating the development and
maintenance of structured program units, and allow-
ing implementation of minor modifications. In addi-
tion, external subroutines can be called. Error
messages provide the exact line number of the error
and indicate possible fixes. Four classes of error mes-
sages are provided, all with different warning levels.
Sce Table 6 for LPI-Pascal extensions.

MAY 1989

LPI-PL/1 Technical Description

LPI-PL/1 is a full implementation of the ANSI PL/I
X3.74-1981 General Purpose Subset. Language exten-
sions afford compatibility with PL/1 dialects for sys-
tems such as Digital VAX minicomputers and IBM
mainframes. Applications using LPI-PL/1 can inter-
face with existing system libraries, providing access to
graphics and statistical analysis capabilities.

LPI-RPG Il Technical Description

LPI-RPG II is an implementation of IBM System/34
and System/36 RPG II. It includes an RPG II com-
piler, OCL processor, and utilities to help transport
RPG II programs from IBM systems to UNIX and
Xenix systems. Utilities include a screen format gen-
erator, message file builder, data file utility, sort util-
ity, source edit utility, terminal definition file utility,
and EBCDIC-to-ASCII data file conversion utility.

ENVIRONMENTAL REQUIREMENTS

LPI compilers occupy between 1M and 2M bytes of
hard disk space, depending on the language, and re-
quire 2M bytes of memory. Since processors and
UNIX implementations are different, LPI provides
compilers designed specifically for each customer’s
configuration.

TABLE 6. LPI-PASCAL EXTENSIONS

« The extern directive specifies that a procedure or function is
defined externally.

« Optional otherwise clause for case statements.

« Use of the dollar sign ($) anywhere in identifiers.

« Binary operators & (bitwise and) and ! (bitwise or), allowing
integers to be used as bit-flags.

« Underscore character (_) in any position but the first position
in identifiers.

« %include compiler directive allows insertion of source code
from a specified file.

« External files do not have to be declared as program parameters.

« RESET and REWRITE allow a second optional parameter for
filename specification:

« Supports the close file handling procedure.

« $E + compiler directive enables/disables generation of external
references.

«$A + compiler directive enables/disables subscript checking.

« 3R+ compiler directive enables/disables range checking.

« $L + compiler directive enables/disables generation of program
listing.

« Defines standard text files named input and output as the
terminal.

« Ignores a variant list specified in a new or dispose procedure.

« Allows the parts of a program or procedure block to appear in
any order. Declaration parts can be repeated, except for
forward references and duplicate declarations.

COPYRIGHT %, 1989 McGRAW-HILL, INCORPORATED. REPRODUCTION PROHIBITED

DATAPRO RESEARCH, DELRAN NJ 08075 USA

UX17-546-112
Compilers

Language Processors, Inc.
Multi-Language Family

PRICING AND SUPPORT

Pricing

Pricing for LPI products running on the MC680X0,
MC88000, Sun SPARC, and WE32000 processors is
broken out into four categories—Class A, Class B,
Class C, and File Servers.

Class A processors support up to eight I/O ports and
include Convergent Technologies’ S/50 and S/80,
along with AT&T 3B1.)

Class B processors support 9 to 32 I/O ports and
include Altos 680X0; Apollo 3000/4000 single-user
workstations; Arix 800/900; Convergent Technologies
S/120, S/221, S/222, S/640, and S/1280; Honeywell
XPS-100; Hewlett-Packard 9000/300 single-user
workstations; Sun-3 single-user workstations; Unisys
5000/25, 45, and 55; AT&T 3B2 600 Series; and NEC
Astra XL Family.

Class C processors support 33 to 64 I/O ports and
include Arix 1200/1600; Convergent Technologies S/
320, S/480, S/640, S/1280; and Unisys 5000/65, 85,
and 95.

Prices for these classes and a separate classification
for file servers are provided in the Software Prices
section below. In addition, UNIX and Xenix prod-
ucts for the Intel 386 processor are also provided in
the price list.

Fifteen percent of the compiler list price for LPI-
Cobol, LPI-PL/1, or LPI-Basic is for the LPI run-time
license, which allows distribution of a program com-
piled with LPI software on a computer system other
than the computer system for which LPI software was
purchased. There is no run-time license fee for LPI-
Fortran, LPI-C, or LPI-Pascal under UNIX or Xenix.

Media

Customers specify the release media desired, accord-
ing to the processor. Available media includes car-
tridge tape, mag tape, 5%-inch diskettes, and 3'2-inch
diskettes.

Documentation

Documentation is included in compiler purchases
and can be purchased separately. Each documenta-
tion set consists of a Language Reference Manual,
Users Guide, Quick Reference Guide, Release Notes,
and periodic Technical Bulletins. The language refer-

COPYRIGHT © 1989 McGRAW-HILL, INCORPORATED. REPRODUCTION PROHIBITED

ence manual describes all of the features of the lan-
guage as implemented by LPI. The user’s guide
describes the operation of the compiler on a particu-
lar system and includes the command sequences
needed to invoke the compiler and compilation op-
tions. Release notes outline the product’s implemen-
tation and installation status.

Support

All LPI products are provided with 30 days of intro-
ductory CareWare service. After this period, three
levels of increasing CareWare service products are
available. CareWare One provides response$ to writ-
ten requests, a 25 percent discount off the update
price of a compiler, and a subscription to the Care-
Ware Technical Bulletin containing technical update
information. CareWare Two incorporates all Care-
Ware one provisions, includes telephone technical
support and a 50 percent discount off the compiler
update price. CareWare Three is offered as a supple-
ment to CareWare Two and provides up to 40 hours
of in-depth technical consultation services during a
three-month period (used for application conversions
or UNIX consultation).

SOFTWARE PRICES

Price Update

LPI-Basic ® _®
Class A 695 345
Class B - 1,695 845
Class C 2,995 1,495
File Server 5,995 2,997
80386 Processor UNIX 695 345
80386 Processor Xenix 695 345
LPI-C
Class A 695 345
Class B 1,695 845
Class C 2,995 1,495
File Server 5,995 2,997
80386 Processor UNIX 695 345
80386 Processor Xenix 695 345
LPI-Cobol
Class A 795 395
Class B 1,995 995
Class C 3,695 1,795
File Server 8,995 4,497
80386 Processor UNIX 1,495 745
80386 Processor Xenix 1,495 745
LPI-Fortran
Class A 795 395
Class B 1,995 995
Class C 3,595 1,795
File Server 6,795 3,397
80386 Processor UNIX 995 495
80386 Processor Xenix 995 495
MAY 1989

DATAPRO RESEARCH, DELRAN NJ 08075 USA

LPi-Pascal

Class A
Class B
Class C
80386 Processor UNIX
80386 Processor Xenix

LPI-PL/I

Class A

Class B

Class C

File Server

80386 Processor UNIX
80386 Processor Xenix

UX17-546-113
Compilers

Language Processors, Inc.
Multi-Language Family

Price
($)

695
1,695
2,995

995

995

995
2,495
4,495
8,995
1,995
1,995

LPI-RPG Il Development System

Includes all components necessary to develop and run the application on

the system for which the compiler was purchased.

Class A
Class B
Class C
80386 Processor UNIX
80386 Processor Xenix

LPI-RPG Il Execution Fee

This provides rights to incorporate the LPI utilities and run-time library
modules necessary to run applications on a system other than the one for

1,995
3,995
5,995
2,995
2,995

which the compiler was purchased.

Class A
Class B
Class C
80386 Processor UNIX
80386 Processor Xenix

CodeWatch (LPl-Debug)

Class A
Class B
Class C
File Server

MAY 1989

995
1,295
2,295

995

995

495
1,195
2,495
5,995

Update

($)

345
845
1,495
495
495

495
1,245
2,245
4,497

995

995

995
1,995
2,995
1,495
1,495

495
645
1,145
495
495

245
595
1,245
2,997

Price Update

($) ($)
80386 Processor UNIX 795 395
80386 Processor Xenix 795 395
CokEdit
80386 Processor UNIX 349 175
80386 Process Xenix 349 175

MAINTENANCE FEES

Price
($)

Introductory Careware

Thirty days free 0

CareWare One

Includes CareWare Technical Bulletin, 25% off software 150
update price, and responses to written requests.

Careware Two

Includes CareWare Technical Bulletin, 50% off software 500
update price, and telephone support.

CareWare Two for LPI-RPG II

Includes CareWare Technical Bulletin, 50% off software 1,500
update price, and telephone support for LPI-RPG II.

CareWare Three

Includes up to 40 hours of consultation services within 4,000
three months. Must be purchased with CareWare
Two. O

COPYRIGHT © 1989 McGRAW-HILL, INCORPORATED. REPRODUCTION PROHIBITED
DATAPRO RESEARCH, DELRAN NJ 08075 USA

